• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • المساعدة
    • إرسال الأعمال الأكاديمية
    • سياسات الناشر
    • أدلة المستخدم
    • الأسئلة الأكثر تكراراً
  • عن المستودع الرقمي
    • الرؤية والرسالة
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • علوم وهندسة الحاسب
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • علوم وهندسة الحاسب
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Deep Reinforcement Learning for Real-Time Trajectory Planning in UAV Networks

    Thumbnail
    التاريخ
    2020-06-01
    المؤلف
    Li, Kai
    Ni, Wei
    Tovar, Eduardo
    Guizani, Mohsen
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    In Unmanned Aerial Vehicle (UAV)-enabled wireless powered sensor networks, a UAV can be employed to charge the ground sensors remotely via Wireless Power Transfer (WPT) and collect the sensory data. This paper focuses on trajectory planning of the UAV for aerial data collection and WPT to minimize buffer overflow at the ground sensors and unsuccessful transmission due to lossy airborne channels. Consider network states of battery levels and buffer lengths of the ground sensors, channel conditions, and location of the UAV. A flight trajectory planning optimization is formulated as a Partial Observable Markov Decision Process (POMDP), where the UAV has partial observation of the network states. In practice, the UAV-enabled sensor network contains a large number of network states and actions in POMDP while the up-to-date knowledge of the network states is not available at the UAV. To address these issues, we propose an onboard deep reinforcement learning algorithm to optimize the realtime trajectory planning of the UAV given outdated knowledge on the network states.
    معرّف المصادر الموحد
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85089694273&origin=inward
    DOI/handle
    http://dx.doi.org/10.1109/IWCMC48107.2020.9148316
    http://hdl.handle.net/10576/36939
    المجموعات
    • علوم وهندسة الحاسب [‎2428‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    عن المستودع الرقمي

    الرؤية والرسالة

    المساعدة

    إرسال الأعمال الأكاديميةسياسات الناشرأدلة المستخدمالأسئلة الأكثر تكراراً

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    Video