• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
    • QSpace policies
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Selection of effective machine learning algorithm and Bot-IoT attacks traffic identification for internet of things in smart city

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2020-06-01
    Author
    Shafiq, Muhammad
    Tian, Zhihong
    Sun, Yanbin
    Du, Xiaojiang
    Guizani, Mohsen
    Metadata
    Show full item record
    Abstract
    Identifying cyber attacks traffic is very important for the Internet of things (IoT) security in smart city. Recently, the research community in the field of IoT Security endeavor hard to build anomaly, intrusion and cyber attacks traffic identification model using Machine Learning (ML) algorithms for IoT security analysis. However, the critical and significant problem still not studied in depth that is how to select an effective ML algorithm when there are numbers of ML algorithms for cyber attacks detection system for IoT security. In this paper, we proposed a new framework model and a hybrid algorithm to solve this problem. Firstly BoT-IoT identification dataset is applied and its 44 effective features are selected from a number of features for the machine learning algorithm. Then five effective machine learning algorithm is selected for the identification of malicious and anomaly traffic identification and also select the most widely ML algorithm performance evaluation metrics. To find out which ML algorithm is effective and should be used to select for IoT anomaly and intrusion traffic identification, a bijective soft set approach and its algorithm is applied. Then we applied the proposed algorithm based on bijective soft set approach. Our experimental results show that the proposed model with the algorithm is effective for the selection ML algorithm out of numbers of ML algorithms.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85079357236&origin=inward
    DOI/handle
    http://dx.doi.org/10.1016/j.future.2020.02.017
    http://hdl.handle.net/10576/37040
    Collections
    • Computer Science & Engineering [‎1671‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission QSpace policies

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video