• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • المساعدة
    • إرسال الأعمال الأكاديمية
    • سياسات الناشر
    • أدلة المستخدم
    • الأسئلة الأكثر تكراراً
  • عن المستودع الرقمي
    • الرؤية والرسالة
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • علوم وهندسة الحاسب
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • علوم وهندسة الحاسب
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Selection of effective machine learning algorithm and Bot-IoT attacks traffic identification for internet of things in smart city

    Thumbnail
    عرض / فتح
    اصدار الناشر (بإمكانك الوصول وعرض الوثيقة / التسجيلةمتاح للجميع Icon)
    اصدار الناشر (تحقق من خيارات الوصول)
    تحقق من خيارات الوصول
    التاريخ
    2020-06-01
    المؤلف
    Shafiq, Muhammad
    Tian, Zhihong
    Sun, Yanbin
    Du, Xiaojiang
    Guizani, Mohsen
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    Identifying cyber attacks traffic is very important for the Internet of things (IoT) security in smart city. Recently, the research community in the field of IoT Security endeavor hard to build anomaly, intrusion and cyber attacks traffic identification model using Machine Learning (ML) algorithms for IoT security analysis. However, the critical and significant problem still not studied in depth that is how to select an effective ML algorithm when there are numbers of ML algorithms for cyber attacks detection system for IoT security. In this paper, we proposed a new framework model and a hybrid algorithm to solve this problem. Firstly BoT-IoT identification dataset is applied and its 44 effective features are selected from a number of features for the machine learning algorithm. Then five effective machine learning algorithm is selected for the identification of malicious and anomaly traffic identification and also select the most widely ML algorithm performance evaluation metrics. To find out which ML algorithm is effective and should be used to select for IoT anomaly and intrusion traffic identification, a bijective soft set approach and its algorithm is applied. Then we applied the proposed algorithm based on bijective soft set approach. Our experimental results show that the proposed model with the algorithm is effective for the selection ML algorithm out of numbers of ML algorithms.
    معرّف المصادر الموحد
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85079357236&origin=inward
    DOI/handle
    http://dx.doi.org/10.1016/j.future.2020.02.017
    http://hdl.handle.net/10576/37040
    المجموعات
    • علوم وهندسة الحاسب [‎2482‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    عن المستودع الرقمي

    الرؤية والرسالة

    المساعدة

    إرسال الأعمال الأكاديميةسياسات الناشرأدلة المستخدمالأسئلة الأكثر تكراراً

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    Video