• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • About QSpace
    • Vision & Mission
  • Help
    • Item Submission
    • Publisher policies
    • User guides
      • QSpace Browsing
      • QSpace Searching (Simple & Advanced Search)
      • QSpace Item Submission
      • QSpace Glossary
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Chemistry & Earth Sciences
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Chemistry & Earth Sciences
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Binary Si–Ge Alloys as High-Capacity Anodes for Li-Ion Batteries

    Thumbnail
    Date
    2020-01-01
    Author
    Bensalah, Nasr
    Matalkeh, Maha
    Mustafa, Noor K.
    Merabet, Hocine
    Metadata
    Show full item record
    Abstract
    Herein, Si–Ge binary alloy films are prepared by deposition on rough copper (Cu) foil and multiwalled carbon nanotube (MWCNT) sheets using radio frequency (RF) magnetron sputtering. The as-prepared SiGe@Cu and SiGe@MWCNT thin films are then characterized by spectroscopy and microscopy techniques. Scanning electron microscopy (SEM) shows that SiGe nanosheets are deposited on the Cu foil, whereas amorphous SiGe spherical nanoparticles are deposited on the MWCNT surface and incorporated inside its pores. Raman and X-ray diffraction (XRD) confirm an amorphous structure for the sputtered films. SiGe film thicknesses of 201, 386, and 582 nm are measured by topography after 0.5, 1, and 2 h RF sputtering, respectively. The electrochemical performance of SiGe@Cu and SiGe@CNT is assessed by cyclic voltammetry (CV) and galvanostatic charge–discharge (GCD) in half cells using Li metal as the counter and reference electrode and 1 m LiPF6 in organic carbonates electrolyte. SiGe@Cu exhibits a very stable cyclability during the first ten cycles. The specific charge capacity retention decreases from 97.7%, 94.5%, 88.7%, and 81.2% after 20, 30, 40, and 50 cycles, respectively. A higher specific capacity of SiGe@MWCNT is measured due to deeper lithiation/delithiation reactions. Thus, more investigations are needed to improve the performance of SiGe during long cycling.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85075026371&origin=inward
    DOI/handle
    http://dx.doi.org/10.1002/pssa.201900414
    http://hdl.handle.net/10576/37156
    Collections
    • Chemistry & Earth Sciences [‎616‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policies

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Video