• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • المساعدة
    • إرسال الأعمال الأكاديمية
    • سياسات الناشر
    • أدلة المستخدم
    • الأسئلة الأكثر تكراراً
  • عن المستودع الرقمي
    • الرؤية والرسالة
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الآداب والعلوم
  • الرياضيات والإحصاء والفيزياء
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الآداب والعلوم
  • الرياضيات والإحصاء والفيزياء
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Regression estimator under inverse sampling to estimate arsenic contamination

    Thumbnail
    التاريخ
    2011
    المؤلف
    Moradi, M.
    Salehi, M.
    Brown, J. A.
    Karimi, N.
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    The fate of arsenic introduced to the environment as a result of the natural and human activities is an important issue. Surveys of arsenic typically involve sampling from a large area. Measuring arsenic concentrations in samples is expensive, and any improvement in the survey design is welcome. One way to improve efficiency in sampling is to make use of auxiliary information. Surveys of environmental pollution can be classed as surveys of rare populations, where there is a large area with a small polluted subarea. The rare population has many zeroes, or low, values, and contaminated subareas have non-zero, or high, values. Regression estimators or ratio estimators are undefined for those samples containing only information from the non-rare (zero-value) subpopulation (i.e., the non-contaminated subpopulation) in simple random sampling. In this paper, we introduce the modified regression estimators and their associated variance estimators for sampling designs which are suitable for rare populations, such as general inverse sampling and inverse sampling with unequal selection probabilities. We conducted a simulation study on the real rare population arsenic contamination in Kurdistan. The simulation results showed that the modified regression estimators are more efficient than the previous estimators. Copyright © 2011 John Wiley & Sons, Ltd.
    DOI/handle
    http://dx.doi.org/10.1002/env.1116
    http://hdl.handle.net/10576/3719
    المجموعات
    • الرياضيات والإحصاء والفيزياء [‎790‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    عن المستودع الرقمي

    الرؤية والرسالة

    المساعدة

    إرسال الأعمال الأكاديميةسياسات الناشرأدلة المستخدمالأسئلة الأكثر تكراراً

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    Video