• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • المساعدة
    • إرسال الأعمال الأكاديمية
    • سياسات الناشر
    • أدلة المستخدم
    • الأسئلة الأكثر تكراراً
  • عن المستودع الرقمي
    • الرؤية والرسالة
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • علوم وهندسة الحاسب
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • علوم وهندسة الحاسب
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A Distributed Deep Learning System for Web Attack Detection on Edge Devices

    Thumbnail
    التاريخ
    2020-03-01
    المؤلف
    Tian, Zhihong
    Luo, Chaochao
    Qiu, Jing
    Du, Xiaojiang
    Guizani, Mohsen
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    With the development of Internet of Things (IoT) and cloud technologies, numerous IoT devices and sensors transmit huge amounts of data to cloud data centers for further processing. While providing us considerable convenience, cloud-based computing and storage also bring us many security problems, such as the abuse of information collection and concentrated web servers in the cloud. Traditional intrusion detection systems and web application firewalls are becoming incompatible with the new network environment, and related systems with machine learning or deep learning are emerging. However, cloud-IoT systems increase attacks against web servers, since data centralization carries a more attractive reward. In this article, based on distributed deep learning, we propose a web attack detection system that takes advantage of analyzing URLs. The system is designed to detect web attacks and is deployed on edge devices. The cloud handles the above challenges in the paradigm of the Edge of Things. Multiple concurrent deep models are used to enhance the stability of the system and the convenience in updating. We implemented experiments on the system with two concurrent deep models and compared the system with existing systems by using several datasets. The experimental results with 99.410% in accuracy, 98.91% in true positive rate (TPR), and 99.55% in detection rate of normal requests (DRN) demonstrate the system is competitive in detecting web attacks.
    معرّف المصادر الموحد
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85078480541&origin=inward
    DOI/handle
    http://dx.doi.org/10.1109/TII.2019.2938778
    http://hdl.handle.net/10576/37266
    المجموعات
    • علوم وهندسة الحاسب [‎2428‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    عن المستودع الرقمي

    الرؤية والرسالة

    المساعدة

    إرسال الأعمال الأكاديميةسياسات الناشرأدلة المستخدمالأسئلة الأكثر تكراراً

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    Video