• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • المساعدة
    • إرسال الأعمال الأكاديمية
    • سياسات الناشر
    • أدلة المستخدم
    • الأسئلة الأكثر تكراراً
  • عن المستودع الرقمي
    • الرؤية والرسالة
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • علوم وهندسة الحاسب
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • علوم وهندسة الحاسب
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Air quality monitoring and prediction system using machine-to-machine platform

    Thumbnail
    التاريخ
    2012
    المؤلف
    Kadri, Abdullah
    Shaban, Khaled Bashir
    Yaacoub, Elias
    Abu-Dayya, Adnan
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    This paper presents an ambient air quality monitoring and prediction system. The system consists of several distributed monitoring stations that communicate wirelessly to a backend server using machine-to-machine communication protocol. Each station is equipped with gas- eous and meteorological sensors as well as data logging and wireless communication capabilities. The backend server collects real time data from the stations and converts it into information delivered to users through web portals and mobile applications. In addition to manipulating the real time information, the system is able to predict futuristic concentration values of gases by applying artificial neural networks trained by historical and collected data by the system. The system has been implemented and four solar-powered stations have been deployed over an area of 1 km 2. Data over four months has been collected and artificial neural networks have been trained to predict the average values of the next hour and the next eight hours. The results show very accurate prediction. 2012 Springer-Verlag.
    DOI/handle
    http://dx.doi.org/10.1007/978-3-642-34478-7_62
    http://hdl.handle.net/10576/37490
    المجموعات
    • علوم وهندسة الحاسب [‎2482‎ items ]
    • أبحاث مركز قطر لابتكارات التكنولوجيا [‎278‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    عن المستودع الرقمي

    الرؤية والرسالة

    المساعدة

    إرسال الأعمال الأكاديميةسياسات الناشرأدلة المستخدمالأسئلة الأكثر تكراراً

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    Video