عرض بسيط للتسجيلة

المؤلفEl Ballouli, Rim
المؤلفEl-Hajj, Wassim
المؤلفGhandour, Ahmad
المؤلفElbassuoni, Shady
المؤلفHajj, Hazem
المؤلفShaban, Khaled
تاريخ الإتاحة2022-12-21T10:01:46Z
تاريخ النشر2017
اسم المنشورWANLP 2017, co-located with EACL 2017 - 3rd Arabic Natural Language Processing Workshop, Proceedings of the Workshop
المصدرScopus
معرّف المصادر الموحدhttp://dx.doi.org/10.18653/v1/W17-1308
معرّف المصادر الموحدhttp://hdl.handle.net/10576/37493
الملخصData generated on Twitter has become a rich source for various data mining tasks. Those data analysis tasks that are dependent on the tweet semantics, such as sentiment analysis, emotion mining, and rumor detection among others, suffer considerably if the tweet is not credible, not real, or spam. In this paper, we perform an extensive analysis on credibility of Arabic content on Twitter. We also build a classification model (CAT) to automatically predict the credibility of a given Arabic tweet. Of particular originality is the inclusion of features extracted directly or indirectly from the author's profile and timeline. To train and test CAT, we annotated for credibility a data set of 9, 000 Arabic tweets that are topic independent. CAT achieved consistent improvements in predicting the credibility of the tweets when compared to several baselines and when compared to the state-of-the-art approach with an improvement of 21% in weighted average F-measure. We also conducted experiments to highlight the importance of the user-based features as opposed to the content-based features. We conclude our work with a feature reduction experiment that highlights the best indicative features of credibility. 2017 Association for Computational Linguistics
اللغةen
الناشرAssociation for Computational Linguistics (ACL)
الموضوعComputational linguistics
Data mining
Semantics
Sentiment analysis
Statistical tests
Classification models
Content-based features
Data mining tasks
Data set
F measure
Features reductions
Sentiment analysis
State-of-the-art approach
Weighted averages
Social networking (online)
العنوانCAT: Credibility Analysis of Arabic Content on Twitter
النوعConference Paper
الصفحات62-71
dc.accessType Abstract Only


الملفات في هذه التسجيلة

الملفاتالحجمالصيغةالعرض

لا توجد ملفات لها صلة بهذه التسجيلة.

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة