• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Enhancing medical named entity recognition with an extended segment representation technique

    No Thumbnail [120x130]
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2015
    Author
    Keretna, Sara
    Lim, Chee Peng
    Creighton, Doug
    Shaban, Khaled Bashir
    Metadata
    Show full item record
    Abstract
    Objective: The objective of this paper is to formulate an extended segment representation (SR) technique to enhance named entity recognition (NER) in medical applications. Methods: An extension to the IOBES (Inside/Outside/Begin/End/Single) SR technique is formulated. In the proposed extension, a new class is assigned to words that do not belong to a named entity (NE) in one context but appear as an NE in other contexts. Ambiguity in such cases can negatively affect the results of classification-based NER techniques. Assigning a separate class to words that can potentially cause ambiguity in NER allows a classifier to detect NEs more accurately; therefore increasing classification accuracy. Results: The proposed SR technique is evaluated using the i2b2 2010 medical challenge data set with eight different classifiers. Each classifier is trained separately to extract three different medical NEs, namely treatment, problem, and test. From the three experimental results, the extended SR technique is able to improve the average F1-measure results pertaining to seven out of eight classifiers. The kNN classifier shows an average reduction of 0.18% across three experiments, while the C4.5 classifier records an average improvement of 9.33%. 2015 Elsevier Ireland Ltd.
    DOI/handle
    http://dx.doi.org/10.1016/j.cmpb.2015.02.007
    http://hdl.handle.net/10576/37505
    Collections
    • Computer Science & Engineering [‎2428‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video

    NoThumbnail