• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • المساعدة
    • إرسال الأعمال الأكاديمية
    • سياسات الناشر
    • أدلة المستخدم
    • الأسئلة الأكثر تكراراً
  • عن المستودع الرقمي
    • الرؤية والرسالة
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • علوم وهندسة الحاسب
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • علوم وهندسة الحاسب
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    StEduCov: An Explored and Benchmarked Dataset on Stance Detection in Tweets towards Online Education during COVID-19 Pandemic

    Thumbnail
    عرض / فتح
    BDCC-06-00088.pdf (859.2Kb)
    التاريخ
    2022
    المؤلف
    Hamad, Omama
    Hamdi, Ali
    Hamdi, Sayed
    Shaban, Khaled
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    In this paper, we present StEduCov, an annotated dataset for the analysis of stances toward online education during the COVID-19 pandemic. StEduCov consists of 16,572 tweets gathered over 15 months, from March 2020 to May 2021, using the Twitter API. The tweets were manually annotated into the classes agree, disagreeor neutral. We performed benchmarking on the dataset using state-of-the-art and traditional machine learning models. Specifically, we trained deep learning models-bidirectional encoder representations from transformers, long short-term memory, convolutional neural networks, attention-based biLSTM and Naive Bayes SVM-in addition to naive Bayes, logistic regression, support vector machines, decision trees, K-nearest neighbor and random forest. The average accuracy in the 10-fold cross-validation of these models ranged from 75% to (Formula presented.) % and from (Formula presented.) % to 68% for binary and multi-class stance classifications, respectively. Performances were affected by high vocabulary overlaps between classes and unreliable transfer learning using deep models pre-trained on general texts in relation to specific domains such as COVID-19 and distance education. 2022 by the authors.
    DOI/handle
    http://dx.doi.org/10.3390/bdcc6030088
    http://hdl.handle.net/10576/37527
    المجموعات
    • علوم وهندسة الحاسب [‎2428‎ items ]
    • أبحاث فيروس كورونا المستجد (كوفيد-19) [‎849‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    عن المستودع الرقمي

    الرؤية والرسالة

    المساعدة

    إرسال الأعمال الأكاديميةسياسات الناشرأدلة المستخدمالأسئلة الأكثر تكراراً

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    Video