• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • المساعدة
    • إرسال الأعمال الأكاديمية
    • سياسات الناشر
    • أدلة المستخدم
    • الأسئلة الأكثر تكراراً
  • عن المستودع الرقمي
    • الرؤية والرسالة
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • علوم وهندسة الحاسب
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • علوم وهندسة الحاسب
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Wavelet Transform with Histogram-Based Threshold Estimation for Online Partial Discharge Signal Denoising

    Thumbnail
    التاريخ
    2015
    المؤلف
    Hussein, Ramy
    Shaban, Khaled Bashir
    El-Hag, Ayman H.
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    Online condition assessment of the power system devices and apparatus is considered vital for robust operation, where partial discharge (PD) detection is employed as a diagnosis tool. PD measurements, however, are corrupted with different types of noises such as white noise, random noise, and discrete spectral interferences. Hence, the denoising of such corrupted PD signals remains a challenging problem in PD signal detection and classification. The challenge lies in removing these noises from the online PD signal measurements effectively, while retaining its discriminant features and characteristics. In this paper, wavelet-based denoising with a new histogram-based threshold function and selection rule is proposed. The proposed threshold estimation technique obtains two different threshold values for each wavelet sub-band and uses a prodigious thresholding function that conserves the original signal energy. Moreover, two signal-to-noise ratio (SNR) estimation techniques are derived to fit with actual PD signals corrupted with real noise. The proposed technique is applied on different acoustic and current measured PD signals to examine its performance under different noisy environments. The simulation results confirm the merits of the proposed denoising technique compared with other existing wavelet-based techniques by measuring four evaluation metrics: 1) SNR; 2) cross-correlation coefficient; 3) mean square error; and 4) reduction in noise level. 2015 IEEE.
    DOI/handle
    http://dx.doi.org/10.1109/TIM.2015.2454651
    http://hdl.handle.net/10576/37536
    المجموعات
    • علوم وهندسة الحاسب [‎2428‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    عن المستودع الرقمي

    الرؤية والرسالة

    المساعدة

    إرسال الأعمال الأكاديميةسياسات الناشرأدلة المستخدمالأسئلة الأكثر تكراراً

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    Video