• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Mathematics, Statistics & Physics
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Mathematics, Statistics & Physics
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Heat Transfer Attributes of Gold–Silver–Blood Hybrid Nanomaterial Flow in an EMHD Peristaltic Channel with Activation Energy

    Thumbnail
    View/Open
    Heat Transfer Attributes of Gold–Silver–Blood Hybrid.pdf (8.756Mb)
    Date
    2022-05-02
    Author
    Souayeh, Basma
    Ramesh, Katta
    Hdhiri, Najib
    Yasin, Essam
    Alam, Mir Waqas
    Alfares, Kawthar
    Yasin, Amina
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    The heat enhancement in hybrid nanofluid flow through the peristaltic mechanism has received great attention due to its occurrence in many engineering and biomedical systems, such as flow through canals, the cavity flow model and biomedicine. Therefore, the aim of the current study was to discuss the hybrid nanofluid flow in a symmetric peristaltic channel with diverse effects, such as electromagnetohydrodynamics (EMHD), activation energy, gyrotactic microorganisms and solar radiation. The equations governing this motion were simplified under the approximations of a low Reynolds number (LRN), a long wavelength (LWL) and Debye–Hückel linearization (DHL). The numerical solutions for the non-dimensional system of equations were tackled using the com-putational software Mathematica. The influences of diverse physical parameters on the flow and thermal characteristics were computed through pictorial interpretations. It was concluded from the results that the thermophoresis parameter and Grashof number increased the hybrid nanofluid velocity near the right wall. The nanoparticle temperature decreased with the radiation parameter and Schmidt number. The activation energy and radiation enhanced the nanoparticle volume fraction, and motile microorganisms decreased with an increase in the Peclet number and Schmidt number. The applications of the current investigation include chyme flow in the gastrointestinal tract, the control of blood flow during surgery by altering the magnetic field and novel drug delivery systems in pharmacological engineering.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85129583720&origin=inward
    DOI/handle
    http://dx.doi.org/10.3390/nano12101615
    http://hdl.handle.net/10576/37538
    Collections
    • Mathematics, Statistics & Physics [‎786‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video