• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • المساعدة
    • إرسال الأعمال الأكاديمية
    • سياسات الناشر
    • أدلة المستخدم
    • الأسئلة الأكثر تكراراً
  • عن المستودع الرقمي
    • الرؤية والرسالة
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • علوم وهندسة الحاسب
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • علوم وهندسة الحاسب
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Deep CNN-Based real-time traffic light detector for self-driving vehicles

    Thumbnail
    التاريخ
    2020-02-01
    المؤلف
    Ouyang, Zhenchao
    Niu, Jianwei
    Liu, Yu
    Guizani, Mohsen
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    Due to the unavailability of Vehicle-to-Infrastructure (V2I) communication in current transportation systems, Traffic Light Detection (TLD) is still considered an important module in autonomous vehicles and Driver Assistance Systems (DAS). To overcome low flexibility and accuracy of vision-based heuristic algorithms and high power consumption of deep learning-based methods, we propose a lightweight and real-time traffic light detector for the autonomous vehicle platform. Our model consists of a heuristic candidate region selection module to identify all possible traffic lights, and a lightweight Convolution Neural Network (CNN) classifier to classify the results obtained. Offline simulations on the GPU server with the collected dataset and several public datasets show that our model achieves higher average accuracy and less time consumption. By integrating our detector module on NVidia Jetson TX1/TX2, we conduct on-road tests on two full-scale self-driving vehicle platforms (a car and a bus) in normal traffic conditions. Our model can achieve an average detection accuracy of 99.3 percent (mRttld) and 99.7 percent (Rttld) at 10Hz on TX1 and TX2, respectively. The on-road tests also show that our traffic light detection module can achieve <±1.5m errors at stop lines when working with other self-driving modules.
    معرّف المصادر الموحد
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85078297703&origin=inward
    DOI/handle
    http://dx.doi.org/10.1109/TMC.2019.2892451
    http://hdl.handle.net/10576/37541
    المجموعات
    • علوم وهندسة الحاسب [‎2483‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    عن المستودع الرقمي

    الرؤية والرسالة

    المساعدة

    إرسال الأعمال الأكاديميةسياسات الناشرأدلة المستخدمالأسئلة الأكثر تكراراً

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    Video