• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • عن المستودع الرقمي
    • الرؤية والرسالة
  • المساعدة
    • إرسال الأعمال الأكاديمية
    • سياسات الناشر
    • أدلة المستخدم
      • عرض المستودع الرقمي
      • البحث في المستودع الرقمي (البحث البسيط والبحث المتقدم)
      • ارسال عملك للمستودع الرقمي
      • مصطلحات المستودع الرقمي
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • علوم وهندسة الحاسب
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • علوم وهندسة الحاسب
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A deep learning based static taint analysis approach for IoT software vulnerability location

    Thumbnail
    عرض / فتح
    اصدار الناشر (بإمكانك الوصول وعرض الوثيقة / التسجيلةمتاح للجميع Icon)
    اصدار الناشر (تحقق من خيارات الوصول)
    تحقق من خيارات الوصول
    التاريخ
    2020-02-01
    المؤلف
    Niu, Weina
    Zhang, Xiaosong
    Du, Xiaojiang
    Zhao, Lingyuan
    Cao, Rong
    Guizani, Mohsen
    ...show more authors ...show less authors
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    Computer system vulnerabilities, computer viruses, and cyber attacks are rooted in software vulnerabilities. Reducing software defects, improving software reliability and security are urgent problems in the development of software. The core content is the discovery and location of software vulnerability. However, traditional human experts-based approaches are labor-consuming and time-consuming. Thus, some automatic detection approaches are proposed to solve the problem. But, they have a high false negative rate. In this paper, a deep learning based static taint analysis approach is proposed to automatically locate Internet of Things (IoT) software vulnerability, which can relieve tedious manual analysis and improve detection accuracy. Deep learning is used to detect vulnerability since it considers the program context. Firstly, the taint from the difference file between the source program and its patched program selection rules are designed. Secondly, the taint propagation paths are got using static taint analysis. Finally, the detection model based on two-stage Bidirectional Long Short Term Memory (BLSTM) is applied to discover and locate software vulnerabilities. The Code Gadget Database is used to evaluate the proposed approach, which includes two types of vulnerabilities in C/C++ programs, buffer error vulnerability (CWE-119) and resource management error vulnerability (CWE-399). Experimental results show that our proposed approach can achieve an accuracy of 0.9732 for CWE-119 and 0.9721 for CWE-399, which is higher than that of the other three models (the accuracy of RNN, LSTM, and BLSTM is under than 0.97) and achieve a lower false negative rate and false positive rate than the other approaches.
    معرّف المصادر الموحد
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85076016382&origin=inward
    DOI/handle
    http://dx.doi.org/10.1016/j.measurement.2019.107139
    http://hdl.handle.net/10576/37542
    المجموعات
    • علوم وهندسة الحاسب [‎2485‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا
    اتصل بنا | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    عن المستودع الرقمي

    الرؤية والرسالة

    المساعدة

    إرسال الأعمال الأكاديميةسياسات الناشر

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا
    اتصل بنا | جامعة قطر

     

     

    Video