• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Business and Economics
  • Accounting & Information Systems
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Business and Economics
  • Accounting & Information Systems
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    An Integrated Design for Classification and Localization of Diabetic Foot Ulcer based on CNN and YOLOv2-DFU Models

    Thumbnail
    View/Open
    An_Integrated_Design_for_Classification_and_Localization_of_Diabetic_Foot_Ulcer_Based_on_CNN_and_YOLOv2-DFU_Models.pdf (2.636Mb)
    Date
    2020-01-01
    Author
    Amin, Javaria
    Sharif, Muhammad
    Anjum, Muhammad Almas
    Khan, Habib Ullah
    Malik, Muhammad Sheraz Arshad
    Kadry, Seifedine
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Diabetes is a chronic disease, if not treated in time may lead to many complications including diabetic foot ulcers (DFU). DFU is a dangerous disease, it needs regular treatment otherwise it may lead towards foot amputation. The DFU is classified into two categories such as infection (bacteria) and the ischaemia (inadequate supply of the blood). The DFU detection at an initial phase is a tough procedure. Therefore in this research work 16 layers convolutional neural network (CNN) for example 01 input, 03 convolutional, 03 batch-normalization, 01 average pooling, 01 skips convolutional, 03 ReLU, 01 add (element-wise addition of two inputs), fully connected, softmax and classification output layers for classification and YOLOv2-DFU for localization of infection/ischaemia models are proposed. In the classification phase, deep features are extracted and supplied to the number of classifiers such as KNN, DT, Ensemble, softmax, and NB to analyze the classification results for the selection of best classifiers. After the experimentation, we observed that DT and softmax achieved consistent results for the detection of ischaemia/infection in all performance metrics such as sensitivity, specificity, and accuracy as compared with other classifiers. In addition, after the classification, the Gradient-weighted class activation mapping (Grad-Cam) model is used to visualize the high-level features of the infected region for better understanding. The classified images are passed to the YOLOv2-DFU network for infected region localization. The Shuffle network is utilized as a mainstay of the YOLOv2 model in which bottleneck extracted features through ReLU node-199 layer and passed to the YOLOv2 model. The proposed method is validated on the newly developed DFU-Part (B) dataset and the results are compared with the latest published work using the same dataset.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85098762943&origin=inward
    DOI/handle
    http://dx.doi.org/10.1109/ACCESS.2020.3045732
    http://hdl.handle.net/10576/37705
    Collections
    • Accounting & Information Systems [‎562‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video