• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • المساعدة
    • إرسال الأعمال الأكاديمية
    • سياسات الناشر
    • أدلة المستخدم
    • الأسئلة الأكثر تكراراً
  • عن المستودع الرقمي
    • الرؤية والرسالة
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الإدارة والاقتصاد
  • المحاسبة ونظم المعلومات
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الإدارة والاقتصاد
  • المحاسبة ونظم المعلومات
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Big data velocity management-from stream to warehouse via high performance memory optimized index join

    Thumbnail
    عرض / فتح
    Big_Data_Velocity_ManagementFrom_Stream_to_Warehouse_via_High_Performance_Memory_Optimized_Index_Join.pdf (1.344Mb)
    التاريخ
    2020-10-23
    المؤلف
    Naeem, M. Asif
    Mirza, Farhaan
    Khan, Habib Ullah
    Sundaram, David
    Jamil, Noreen
    Weber, Gerald
    ...show more authors ...show less authors
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    Efficient resource optimization is critical to manage the velocity and volume of real-time streaming data in near-real-time data warehousing and business intelligence. This article presents a memory optimisation algorithm for rapidly joining streaming data with persistent master data in order to reduce data latency. Typically during the transformation phase of ETL (Extraction, Transformation, and Loading) a stream of transactional data needs to be joined with master data stored on disk. To implement this process, a semi-stream join operator is commonly used. Most semi-stream join operators cache frequent parts of the master data to improve their performance, this process requires careful distribution of allocated memory among the components of the join operator. This article presents a cache inequality approach to optimise cache size and memory. To test this approach, we present a novel Memory Optimal Index-based Join (MOIJ) algorithm. MOIJ supports many-to-many types of joins and adapts to dynamic streaming data. We also present a cost model for MOIJ and compare the performance with existing algorithms empirically as well as analytically. We envisage the enhanced ability of processing near-real-time streaming data using minimal memory will reduce latency in processing big data and will contribute to the development of highperformance real-time business intelligence systems.
    معرّف المصادر الموحد
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85102896549&origin=inward
    DOI/handle
    http://dx.doi.org/10.1109/ACCESS.2020.3033464
    http://hdl.handle.net/10576/37715
    المجموعات
    • المحاسبة ونظم المعلومات [‎561‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    عن المستودع الرقمي

    الرؤية والرسالة

    المساعدة

    إرسال الأعمال الأكاديميةسياسات الناشرأدلة المستخدمالأسئلة الأكثر تكراراً

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    Video