عرض بسيط للتسجيلة

المؤلفAnjum, Muhammad Almas
المؤلفAmin, Javaria
المؤلفSharif, Muhammad
المؤلفKhan, Habib Ullah
المؤلفMalik, Muhammad Sheraz Arshad
المؤلفKadry, Seifedine
تاريخ الإتاحة2022-12-29T06:03:43Z
تاريخ النشر2020-07-14
اسم المنشورIEEE Access
المعرّفhttp://dx.doi.org/10.1109/ACCESS.2020.3009276
الاقتباسAnjum, M. A., Amin, J., Sharif, M., Khan, H. U., Malik, M. S. A., & Kadry, S. (2020). Deep semantic segmentation and multi-class skin lesion classification based on convolutional neural network. IEEE Access, 8, 129668-129678.
الرقم المعياري الدولي للكتاب2169-3536
معرّف المصادر الموحدhttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85089508765&origin=inward
معرّف المصادر الموحدhttp://hdl.handle.net/10576/37772
الملخصSkin cancer is developed due to abnormal cell growth. These cells are grown rapidly and destroy the normal skin cells. However, it's curable at an initial stage to reduce the patient's mortality rate. In this article, the method is proposed for localization, segmentation and classification of the skin lesion at an early stage. The proposed method contains three phases. In phase I, different types of the skin lesion are localized using tinyYOLOv2 model in which open neural network (ONNX) and squeeze Net model are used as a backbone. The features are extracted from depthconcat7 layer of squeeze Net and passed as an input to the tinyYOLOv2. The propose model accurately localize the affected part of the skin. In Phase II, 13-layer 3D-semantic segmentation model (01 input, 04 convolutional, 03 batch-normalization, 03 ReLU, softmax and pixel classification) is used for segmentation. In the proposed segmentation model, pixel classification layer is used for computing the overlap region between the segmented and ground truth images. Later in Phase III, extract deep features using ResNet-18 model and optimized features are selected using ant colony optimization (ACO) method. The optimized features vector is passed to the classifiers such as optimized (O)-SVM and O-NB. The proposed method is evaluated on the top MICCAI ISIC challenging 2017, 2018 and 2019 datasets. The proposed method accurately localized, segmented and classified the skin lesion at an early stage.
راعي المشروعQatar University [IRCC-2020-009].
اللغةen
الناشرIEEE
الموضوعant colony optimization
ONNX
ResNet-18
squeeze Net
SVM
YOLOv2
العنوانDeep Semantic Segmentation and Multi-Class Skin Lesion Classification Based on Convolutional Neural Network
النوعArticle
الصفحات129668-129678
رقم المجلد8
dc.accessType Open Access


الملفات في هذه التسجيلة

Thumbnail

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة