• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Robust event-based non-intrusive appliance recognition using multi-scale wavelet packet tree and ensemble bagging tree

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    1-s2.0-S0306261920303895-main.pdf (2.274Mb)
    Date
    2020
    Author
    Himeur, Yassine
    Alsalemi, Abdullah
    Bensaali, Faycal
    Amira, Abbes
    Metadata
    Show full item record
    Abstract
    Providing the user with appliance-level consumption data is the core of each energy efficiency system. To that end, non-intrusive load monitoring is employed for extracting appliance specific consumption data at a low cost without the need of installing separate submeters for each electrical device. In this context, we propose in this paper a novel non-intrusive appliance recognition system based on (i) detecting events in the aggregated power signal using a novel and powerful scheme, (ii) applying multiscale wavelet packet tree to collect comprehensive energy consumption features, and (iii) adopting an ensemble bagging tree classifier along with comparing its performance with various machine learning schemes. Moreover, to validate the proposed model, an empirical investigation is conducted on two real and public energy consumption datasets, namely, the GREEND and REDD, in which consumption readings are collected at low-frequencies. In addition, a comprehensive review of recent non-intrusive load monitoring approaches has been conducted and presented, in which their characteristics, performances and limitations are described. The proposed non-intrusive load monitoring system shows a high appliance recognition performance in terms of the accuracy, F1 score and low time complexity when it has been applied to different households from the GREEND and REDD repositories, in which every house includes various domestic appliances. Obtained results have described, e.g., that average accuracies of 97.01% and 96.36% have been reached on the GREEND and REDD datasets, respectively, which outperformed almost existing solutions considered in this framework. 2020 Elsevier Ltd
    DOI/handle
    http://dx.doi.org/10.1016/j.apenergy.2020.114877
    http://hdl.handle.net/10576/37795
    Collections
    • Electrical Engineering [‎2823‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video