• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    The Emergence of Hybrid Edge-Cloud Computing for Energy Efficiency in Buildings

    Thumbnail
    Date
    2022
    Author
    Himeur, Yassine
    Alsalemi, Abdullah
    Bensaali, Faycal
    Amira, Abbes
    Metadata
    Show full item record
    Abstract
    Edge computing is attracting an increasing attention presently even though most of the building energy efficiency solutions are still using cloud computing for gathering, pre-processing and analyzing energy data. However, edge computing still requires more power in order to be used alone to meet the high computation demand of artificial intelligence based energy saving solutions. Meanwhile, a hybrid edge-cloud architecture can be the best current approach to implement energy efficiency systems. It provides end-users and utility companies with a flexible control of their energy usage footprints, minimizes the cost of cloud hosting, and improves privacy-preservation. Accordingly, in this paper, we present a novel energy efficiency system based on a hybrid edge-cloud computing architecture. To analyze energy and occupancy data collected through different smart meters and occupancy sensors, we use a micro-moment approach to cluster energy observations into different categories representing both normal and abnormal energy usage. Following, a deep micro-moments (deepM2) scheme is deployed to automate the Anomaly Detection task, where a new approach called deepM2-AD is developed. Moving forward, deepM2-AD is implemented on three different architectures, defined as edge-only, cloud-only and hybrid edge-cloud to evaluate their performance and identify their merits and demerits. Overall, the hybrid edge-cloud architecture has presented the best compromise in terms of improving the processing speed, curtailing the cost of cloud hosting, and reducing the communication latency. Therefore, it has a great potential for supporting real-time energy consumption anomaly detection applications that help in minimizing wasted energy. 2022, The Author(s), under exclusive license to Springer Nature Switzerland AG.
    DOI/handle
    http://dx.doi.org/10.1007/978-3-030-82196-8_6
    http://hdl.handle.net/10576/37798
    Collections
    • Electrical Engineering [‎2823‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video