• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Smart fusion of sensor data and human feedback for personalized energy-saving recommendations

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2022
    Author
    Varlamis, Iraklis
    Sardianos, Christos
    Chronis, Christos
    Dimitrakopoulos, George
    Himeur, Yassine
    Alsalemi, Abdullah
    Bensaali, Faycal
    Amira, Abbes
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Despite the variety of sensors that can be used in a smart home or office setup, for monitoring energy consumption and assisting users to save energy, their usefulness is limited when they are not properly integrated into the daily activities of humans. Energy-saving applications in such environments can benefit from the use of sensors and actuators when data are properly fused with previous knowledge about user habits and feedback about current user preferences. In this article, we present an online recommender system implemented in the EM3 platform, a platform for Consumer Engagement Toward Energy-Saving Behavior. The recommender system uniquely fuses sensors' data with user habits and user feedback and provides personalized recommendations for energy efficiency at the right moment. The user response to the recommendations directly triggers actuators that perform energy-saving actions and is recorded and processed for refining future recommendations. The EM3 recommendation engine continuously evaluates the three inputs (i.e. sensor data, user habits, user feedback) and identifies the micro-moments that maximize the need for the recommended action and thus the recommendation acceptance. We evaluate the efficiency of the proposed recommender system, which is based on a stacked-LSTM for fusing multi-sensor data streams, in several scenarios, and the observed accuracy on predicting the right moment to send a recommendation to the user ranged from 93% to 97%. 2021 Elsevier Ltd
    DOI/handle
    http://dx.doi.org/10.1016/j.apenergy.2021.117775
    http://hdl.handle.net/10576/37805
    Collections
    • Electrical Engineering [‎2821‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video