• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Revolutionizing ECMO simulation with affordable yet high-Fidelity technology

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2018
    Author
    Al Disi, Mohammed
    Alsalemi, Abdullah
    Alhomsi, Yahya
    Bensaali, Faycal
    Amira, Abbes
    Alinier, Guillaume
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Simulation-based training (SBT) is becoming a necessity in educating healthcare professionals who work in high-risk environments, such as the intensive care unit (ICU) [1]. This applies to extracorporeal membrane oxygenation (ECMO), a complication-burdened life support ICU modality employed to treat patients with circulatory and/or respiratory failure. Additionally, ECMO can quickly restore perfusion, and hence, used in the pre-hospital or emergency setting as an extracorporeal cardiopulmonary resuscitation (E-CPR) strategy or to maintain donors' organs after circulatory death [2], [3]. Different ECMO simulation models have been reported in the literature. It ranges from simple mannequin and circuit modification with manual control [3], [4], to hydraulically capable, remotely controlled mannequins [5], [6], and high-fidelity simulators [7]. However, the common factor in the incumbent practices is the reliance on a functioning ECMO console and circuit components, which introduces a colossal cost barrier and requires active spending to replace ECMO consumables [8]. Reliance of such specialized and potentially scarce pieces of equipment also significantly reduces training opportunities. Furthermore, attempts to improve the simulation paradigm are faced with ever-increasing technical difficulties. For example, basic objectives such as controlling the displayed circuit pressures require creating a sophisticated hydraulic model. It becomes even more problematic when considering higher level objectives such as simulating blood oxygenation color differentials, or remotely controlling blood gas parameters, displayed on in-line monitors. Hence, there is a need for lower cost, high-fidelity simulation systems with more customization capabilities that meet the expectations and increasing demand for ECMO therapy [9].
    DOI/handle
    http://dx.doi.org/10.1016/j.ajem.2017.11.036
    http://hdl.handle.net/10576/37809
    Collections
    • Computer Science & Engineering [‎2428‎ items ]
    • Electrical Engineering [‎2821‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video