• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Design and implementation of a gas identification system on Zynq SoC platform

    Thumbnail
    Date
    2015
    Author
    Ali, Amine Ait Si
    Amira, Abbes
    Bensaali, Faycal
    Benammar, Mohieddine
    Akbar, Muhammad Ali
    Hassan, Muhammad
    Bermak, Amine
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    The Zynq-7000 based platforms are increasingly being used in different applications including image and signal processing. The Zynq system on chip (SoC) architecture combines a processing system based on a dual core ARM Cortex processor with a programmable logic (PL) based on a Xilinx 7 series field programmable gate arrays (FPGAs). Using the Zynq platform, real-time hardware acceleration can be performed on the programmable logic and controlled by a software running on the ARM-based processing system (PS). In this paper, a design and implementation of a gas identification system on the Zynq platform which shows promising results is presented. The gas identification system is based on a 16- Array SnO2 gas sensor, principal component analysis (PCA) for dimensionality reduction and decision tree (DT) for classification. The main part of the system that will be executed on the PL for hardware acceleration takes the form of an IP developed in C and synthesized using Vivado High Level Synthesis for the conversion from C to register transfer level, a hardware design for the entire system that allows the execution of the IP on the PL and the remaining parts of the identification system on the PS is developed in Vivado using IP Integrator. The communication between the processing system and programmable logic is performed using advanced extensible interface protocol (AXI). A software application is developed and executed on the ARM processor to control the hardware acceleration on the programmable logic of the previously designed IP core and the board is programmed using Software Development Kit. The maximum accuracy achieved by the system to classify three types of gases CO, C2H6O and H2 is 96.66%. 2006-2015 Asian Research Publishing Network (ARPN).
    DOI/handle
    http://hdl.handle.net/10576/37812
    Collections
    • Electrical Engineering [‎2821‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video