• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A novel gateway-based solution for remote elderly monitoring

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    1-s2.0-S1532046420301490-main.pdf (3.895Mb)
    Date
    2020
    Author
    Boukhennoufa, Issam
    Amira, Abbes
    Bensaali, Faycal
    Soheilian Esfahani, Sahar
    Metadata
    Show full item record
    Abstract
    Internet of Things (IoT) technologies have been applied to various fields such as manufacturing, automobile industry and healthcare. IoT-based healthcare has a significant impact on real-time remote monitoring of patients' health and consequently improving treatments and reducing healthcare costs. In fact, IoT has made healthcare more reliable, efficient, and accessible. Two major drawbacks which IoT suffers from can be expressed as: first, the limited battery capacity of the sensors is quickly depleted due to the continuous stream of data; second, the dependence of the system on the cloud for computations and processing causes latency in data transmission which is not accepted in real-time monitoring applications. This research is conducted to develop a real-time, secure, and energy-efficient platform which provides a solution for reducing computation load on the cloud and diminishing data transmission delay. In the proposed platform, the sensors utilize a state-of-the-art power saving technique known as Compressive Sensing (CS). CS allows sensors to retrieve the sensed data using fewer measurements by sending a compressed signal. In this framework, the signal reconstruction and processing are computed locally on a Heterogeneous Multicore Platform (HMP) device to decrease the dependency on the cloud. In addition, a framework has been implemented to control the system, set different parameters, display the data as well as send live notifications to medical experts through the cloud in order to alert them of any eventual hazardous event or abnormality and allow quick interventions. Finally, a case study of the system is presented demonstrating the acquisition and monitoring of the data for a given subject in real-time. The obtained results reveal that the proposed solution reduces 15.4% of energy consumption in sensors, that makes this prototype a good candidate for IoT employment in healthcare. 2020 Elsevier Inc.
    DOI/handle
    http://dx.doi.org/10.1016/j.jbi.2020.103521
    http://hdl.handle.net/10576/37830
    Collections
    • Computer Science & Engineering [‎2428‎ items ]
    • Electrical Engineering [‎2823‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video