• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Real-time ECG monitoring using compressive sensing on a heterogeneous multicore edge-device

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2020
    Author
    Djelouat, Hamza
    Al Disi, Mohamed
    Boukhenoufa, Issam
    Amira, Abbes
    Bensaali, Faycal
    Kotronis, Christos
    Politi, Elena
    Nikolaidou, Mara
    Dimitrakopoulos, George
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    In a typical ambulatory health monitoring systems, wearable medical sensors are deployed on the human body to continuously collect and transmit physiological signals to a nearby gateway that forward the measured data to the cloud-based healthcare platform. However, this model often fails to respect the strict requirements of healthcare systems. Wearable medical sensors are very limited in terms of battery lifetime, in addition, the system reliance on a cloud makes it vulnerable to connectivity and latency issues. Compressive sensing (CS) theory has been widely deployed in electrocardiogramme ECG monitoring application to optimize the wearable sensors power consumption. The proposed solution in this paper aims to tackle these limitations by empowering a gateway-centric connected health solution, where the most power consuming tasks are performed locally on a multicore processor. This paper explores the efficiency of real-time CS-based recovery of ECG signals on an IoT-gateway embedded with ARM's big.LITTLE multicore for different signal dimension and allocated computational resources. Experimental results show that the gateway is able to reconstruct ECG signals in real-time. Moreover, it demonstrates that using a high number of cores speeds up the execution time and it further optimizes energy consumption. The paper identifies the best configurations of resource allocation that provides the optimal performance. The paper concludes that multicore processors have the computational capacity and energy efficiency to promote gateway-centric solution rather than cloud-centric platforms. 2019
    DOI/handle
    http://dx.doi.org/10.1016/j.micpro.2019.06.009
    http://hdl.handle.net/10576/37832
    Collections
    • Electrical Engineering [‎2823‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video