• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    IoT-based mock oxygenator for extracorporeal membrane oxygenation simulator

    Thumbnail
    Date
    2022
    Author
    Sayed, Aya
    Alhomsi, Yahya
    Alsalemi, Abdullah
    Bensaali, Faycal
    Meskin, Nader
    Hssain, Ali Ait
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Background: Training is an essential aspect of providing high-quality treatment and ensuring patient safety in any medical practice. Because extracorporeal membrane oxygenation (ECMO) is a complicated operation with various elements, variables, and irregular situations, doctors must be experienced and knowledgeable about all conventional protocols and emergency procedures. The conventional simulation approach has a number of limitations. The approach is intrinsically costly since it relies on disposable medical equipment (i.e., oxygenators, heat exchangers, and pumps) that must be replaced regularly due to the damage caused by the liquid used to simulate blood. The oxygenator, which oxygenates the blood through a tailored membrane in ECMO, acts as a replacement for the patient's natural lung. For the context of simulation-based training (SBT) oxygenators are often expensive and cannot be recycled owing to contamination issues. Methods: Consequently, it is advised that the training process include a simulated version of oxygenators to optimize reusability and decrease training expenses. Toward this goal, this article demonstrates a mock oxygenator for ECMO SBT, designed to precisely replicate the real machine structure and operation. Results: The initial model was reproduced using 3D modeling and printing. Additionally, the mock oxygenator could mimic frequent events such as pump noise and clotting. Furthermore, the oxygenator is integrated with the modular ECMO simulator using cloud-based communication technology that goes in hand with the internet of things technology to provide remote control via an instructor tablet application. Conclusions: The final 3D modeled oxygenator body was tested and integrated with the other simulation modules at Hamad Medical Corporation with several participants to evaluate the effectiveness of the training session. 2022 The Authors. Artificial Organs published by International Center for Artificial Organ and Transplantation (ICAOT) and Wiley Periodicals LLC.
    DOI/handle
    http://dx.doi.org/10.1111/aor.14318
    http://hdl.handle.net/10576/37851
    Collections
    • Electrical Engineering [‎2823‎ items ]

    entitlement

    Related items

    Showing items related by title, author, creator and subject.

    • Thumbnail

      Freestanding eggshell membrane-based electrodes for high-performance supercapacitors and oxygen evolution reaction 

      Geng, Jing; Wu, Hao; Al-Enizi, Abdullah M.; Elzatahry, Ahmed A.; Zheng, Gengfeng ( Royal Society of Chemistry , 2015 , Article)
      A type of freestanding, light-weight eggshell membrane-based electrode is demonstrated for supercapacitors and for oxygen evolution reaction (OER) catalysis. As a widely available daily waste, eggshell membranes have unique ...
    • Thumbnail

      Highly active, durable and pH-universal hybrid oxide nanocrystals for efficient oxygen evolution 

      Ahmad, Yahia H.; Eid, Kamel A.; AlQaradawi, Siham Y.; Allam, Nageh K. ( Royal Society of Chemistry , 2017 , Article)
      The development of an active, durable, and low-cost catalyst remains hitherto a grand challenge in energy conversion technologies. Herein, hybrid Ptx-NiMnO3 nanocrystals (NCs) (x = 0.1, 0.5, and 1.0 mM) were synthesized ...
    • Thumbnail

      Advanced thermochromic ink system for medical blood simulation 

      Noorizadeh, M.; Alsalemi, A.; Alhomsi, Y.; Sayed, A. N. K. M.; Bensaali, F.; Meskin, Nader; Hssain, A. A.... more authors ... less authors ( MDPI AG , 2021 , Article)
      Simulators for extracorporeal membrane oxygenation (ECMO) have problems of bulky devices and low-fidelity methodologies. Hence, ongoing efforts for optimizing modern solutions focus on minimizing expenses and blending ...

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video