Real-time optical character recognition on field programmable gate array for automatic number plate recognition system
Author | Zhai, Xiaojun |
Author | Bensaali, Faycal |
Author | Sotudeh, Reza |
Available date | 2022-12-29T07:34:47Z |
Publication Date | 2013 |
Publication Name | IET Circuits, Devices and Systems |
Resource | Scopus |
Abstract | The last main stage in an automatic number plate recognition system (ANPRs) is optical character recognition (OCR), where the number plate characters on the number plate image are converted into encoded texts. In this study, an artificial neural network-based OCR algorithm for ANPR application and its efficient architecture are presented. The proposed architecture has been successfully implemented and tested using the Mentor Graphics RC240 field programmable gate arrays (FPGA) development board equipped with a 4M Gates Xilinx Virtex-4 LX40. A database of 3570 UK binary character images have been used for testing the performance of the proposed architecture. Results achieved have shown that the proposed architecture can meet the real-time requirement of an ANPR system and can process a character image in 0.7 ms with 97.3% successful character recognition rate and consumes only 23% of the available area in the used FPGA. The Institution of Engineering and Technology 2013. |
Language | en |
Subject | Automatic Number Plate Recognition systems Character images Efficient architecture Mentor Graphics OCR algorithms Optical character recognition (OCR) Proposed architectures Real time requirement Field programmable gate arrays (FPGA) Neural networks Signal receivers Optical character recognition |
Type | Article |
Pagination | 337-344 |
Issue Number | 6 |
Volume Number | 7 |
Files in this item
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |
This item appears in the following Collection(s)
-
Electrical Engineering [2649 items ]