• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Qatar University Young Scientists Center
  • Research of Qatar University Young Scientists Center
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Qatar University Young Scientists Center
  • Research of Qatar University Young Scientists Center
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Hierarchical BaTiO3/NiFe2O4 nanocomposite as an efficacious photoanode for photoelectrochemical water splitting

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    1-s2.0-S0272884222016182-main.pdf (8.791Mb)
    Date
    2022-10-01
    Author
    Parangusan, Hemalatha
    Bhadra, Jolly
    Ahmad, Zubair
    Karuppasamy, K.
    Mallick, Shoaib
    Touati, Farid
    Al-Thani, Noora
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Photocatalysis of water for the production of oxygen and hydrogen is one of the most important development in the drive for clean energy, and it has received a lot of attention because it is a green and easy step to generate fuels. Developing a more efficient, chemically stable, green and cost-effective catalytic devices for commercial use still remains a challenging task. In this research work, we have designed a new kind of hetero nanostructured hierarchical electrode BaTiO3/NiFe2O4 composite by facile hydrothermal process. The sluggish oxygen-evolving reaction is one of the major challenge in water technology (OER). The prepared photocatalyst exhibited excellent photocatalytic activity towards OER. The prepared electrodes’ physicochemical behaviors have been studied using a variety of spectroscopic techniques include powder X-ray diffraction, UV–Vis diffuse reflectance spectroscopy, X-ray photoelectron spectroscopy and Transmission electron microscopy. The HR-TEM results of pristine BaTiO3 show partially agglomerated nanoparticles which are in spherical shape with size ranging from 50 to 78 nm, whereas pure NiFe2O4 displays needle-like nanorods with average width and length of the needles are around 31 nm and 1.5 μm respectively and the BaTiO3/NiFe2O4 composite shows combination of nanoparticles with nanorods. XPS analysis has revealed the oxygen vacancies and composition of the materials. The optical band gap investigation showed that the composites Eg value is in the visible region. UV–Vis diffuse reflectance spectroscopy revealed that the hierarchical BaTiO3/NiFe2O4 composite has enhanced absorption in the visible region. The photocatalytic activity results show that, the prepared BaTiO3/NiFe2O4 composite photoelectrode yields a photocurrent density of 0.34 mA/cm2 at 1.6 V vs SCE reference electrode confirms their PEC water splitting ability. These observed findings of the hetero-composite clearly make a way to employ them as the plausible electrode for effectual oxygen evolution reaction.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85130338129&origin=inward
    DOI/handle
    http://dx.doi.org/10.1016/j.ceramint.2022.05.063
    http://hdl.handle.net/10576/38312
    Collections
    • Electrical Engineering [‎2821‎ items ]
    • Research of Qatar University Young Scientists Center [‎213‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video