• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
    • QSpace policies
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Civil & Architectural Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Civil & Architectural Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Sensitivity analysis and genetic algorithm-based shear capacity model for basalt FRC one-way slabs reinforced with BFRP bars

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    1-s2.0-S0263822322012053-main.pdf (4.173Mb)
    Date
    2023
    Author
    Al-Hamrani, Abathar
    Wakjira, Tadesse G.
    Alnahhal, Wael
    Ebead, Usama
    Metadata
    Show full item record
    Abstract
    Fiber-reinforced polymer (FRP) composites are increasingly used in concrete structures owing to their superior corrosion resistance. However, FRP-reinforced concrete (RC) structures exhibit less ductile response compared to steel RC structures. Recently, the use of basalt fiber reinforced concrete (BFRC) reinforced with BFRP bars was investigated to achieve a reasonable level of ductility in BFRC-BFRP one-way slabs. The shear behavior of such a slab depends on different design parameters. This paper aims to identify the impact of each design parameter on the shear behavior of BFRC-BFRP one-way slabs using a fractional factorial design of experiment (DOE). A 3D finite element model was first developed and validated against available experimental results. The developed model is then used to conduct a sensitivity analysis considering five factors that influence the shear behavior of BFRC-BFRP one-way slabs. These factors are the longitudinal reinforcement ratio, shear span-to-depth ratio, effective depth, concrete compressive strength, and volume fraction of basalt macro fibers (BMF). Finally, a design equation that can predict the shear capacity of one-way BFRC-BFRP slabs was proposed based on genetic algorithm. The proposed model showed the best prediction accuracy compared to the available design codes and guidelines with a mean of predicted to experimental shear capacities (Vpred/Vexp) ratio of 0.97 and a coefficient of variation of 17.91%. 2022 The Authors
    DOI/handle
    http://dx.doi.org/10.1016/j.compstruct.2022.116473
    http://hdl.handle.net/10576/39136
    Collections
    • Civil & Architectural Engineering [‎437‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission QSpace policies

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video