• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
    • QSpace policies
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Civil & Architectural Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Civil & Architectural Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Shear strength of recycled-aggregate concrete beams with glass-FRP stirrups

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    1-s2.0-S2666682022000251-main.pdf (10.84Mb)
    Date
    2022
    Author
    Younis, Adel
    El-Sherif, Hossam Eldin
    Ebead, Usama
    Metadata
    Show full item record
    Abstract
    The combined use of recycled concrete aggregate (RCA) and glass fiber reinforced polymer (GFRP) reinforcement in reinforced concrete (RC) structures is deemed plausible to achieve sustainable construction. This paper aims to examine the effect of such a combination (RCA + GFRP reinforcement) on the shear behavior of RC beams. Six medium-scale RC beams (150 × 260 × 2200 mm) critical in shear were tested under three-point loading until failure. The test variables were the aggregate type (natural/recycled) and the shear reinforcement (steel/GFRP/none). The failure modes, cracking patterns, load-carrying capacities, deformational and strain characteristics were analyzed and compared among the tested specimens. It was found that using 100% RCA in the concrete mix reduced the shear strength of RC beams (by 12% on average). Minor effects were observed on the shear strength of the beam specimens (∼2%) with altering the transverse reinforcement (GFRP versus steel). Theoretical load-carrying capacities of the tested beams were obtained as per contemporary design guides and compared with the experimental results.
    DOI/handle
    http://dx.doi.org/10.1016/j.jcomc.2022.100257
    http://hdl.handle.net/10576/39140
    Collections
    • Civil & Architectural Engineering [‎437‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission QSpace policies

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video