• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
    • QSpace policies
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Civil & Architectural Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Civil & Architectural Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Shear strengthening of reinforced concrete deep beams using near-surface mounted hybrid carbon/glass fibre reinforced polymer strips

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2020
    Author
    Ibrahim, Mohamed
    Wakjira, Tadesse
    Ebead, Usama
    Metadata
    Show full item record
    Abstract
    This study investigated the efficacy of near surface mounted (NSM) hybrid carbon/glass fibre reinforced polymer (FRP) strips for strengthening of shear-deficient reinforced-concrete (RC) rectangular deep beams. A specific focus was the interaction of FRP with steel stirrups, which were arranged in both aligned and unaligned configurations for different FRP and stirrup volume fractions. Five unstrengthened reference beams and seven strengthened beams were tested. The NSM-FRP increased the beam shear strength up to 55.8%, alleviated debonding between concrete and strengthening material, and enhanced the deformational characteristics of the strengthened beams. The FRP/stirrups interaction also affected the contribution of NSM-FRP to the shear strength of the beams. Moreover, this study proposes a model based on the modified compression field theory (MCFT) to determine the shear capacity of the beams. The proposed formulation accounts for the FRP/stirrups interaction, which is not considered in the currently available models for the NSM-FRP strengthened RC beams. The average theoretical to experimental shear capacities ratio was 0.96 with a standard deviation of 3.19%. 2020 Elsevier Ltd
    DOI/handle
    http://dx.doi.org/10.1016/j.engstruct.2020.110412
    http://hdl.handle.net/10576/39142
    Collections
    • Civil & Architectural Engineering [‎437‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission QSpace policies

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video