• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • المساعدة
    • إرسال الأعمال الأكاديمية
    • سياسات الناشر
    • أدلة المستخدم
    • الأسئلة الأكثر تكراراً
  • عن المستودع الرقمي
    • الرؤية والرسالة
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مراكز البحث
  • مركز الكندي لبحوث الحوسبة
  • الشبكات وخدمات البنية التحتية للمعلومات والبيانات
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مراكز البحث
  • مركز الكندي لبحوث الحوسبة
  • الشبكات وخدمات البنية التحتية للمعلومات والبيانات
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    EEG-based emotion recognition using random Convolutional Neural Networks

    No Thumbnail [120x130]
    عرض / فتح
    اصدار الناشر (بإمكانك الوصول وعرض الوثيقة / التسجيلةمتاح للجميع Icon)
    اصدار الناشر (تحقق من خيارات الوصول)
    تحقق من خيارات الوصول
    التاريخ
    2022-11-01
    المؤلف
    Cheng, Wen Xin
    Gao, Ruobin
    Suganthan, P. N.
    Yuen, Kum Fai
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    Emotion recognition based on electroencephalogram (EEG) signals is helpful in various fields, including medical healthcare. One possible medical application is to diagnose emotional disorders in patients. Humans tend to work and communicate efficiently when in a good mood. On the other hand, negative emotions can harm physical and mental health. Traditional EEG-based methods usually extract time-domain and frequency-domain features before classifying them. Convolutional Neural Networks (CNN) enables us to extract features and classify them end-to-end. However, most CNN methods use backpropagation to train their models, which can be computationally expensive, primarily when a complex model is used. Inspired by the successes of Random Vector Functional Link and Convolutional Random Vector Functional Link, we propose using a randomized CNN model for emotion recognition that removes the need for a backpropagation method. Also, we expand our randomized CNN method to a deep and ensemble version to improve emotion recognition performance. We do experiments on the commonly used publicly available Database for Emotion Analysis using the Physiological Signals (DEAP) dataset to evaluate our randomized CNN models. Results on the DEAP dataset show our models outperform all other models, with at least 95% accuracy for all subjects. Our ensemble version outperforms our shallow version, winning the shallow version in most subjects.
    معرّف المصادر الموحد
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85137166921&origin=inward
    DOI/handle
    http://dx.doi.org/10.1016/j.engappai.2022.105349
    http://hdl.handle.net/10576/39973
    المجموعات
    • الشبكات وخدمات البنية التحتية للمعلومات والبيانات [‎142‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    عن المستودع الرقمي

    الرؤية والرسالة

    المساعدة

    إرسال الأعمال الأكاديميةسياسات الناشرأدلة المستخدمالأسئلة الأكثر تكراراً

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    Video

    NoThumbnail