• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • KINDI Center for Computing Research
  • Network & Distributed Systems
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • KINDI Center for Computing Research
  • Network & Distributed Systems
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Oblique and rotation double random forest

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Oblique and rotation double random forest.pdf (622.9Kb)
    Date
    2022-09-01
    Author
    Ganaie, M. A.
    Tanveer, M.
    Suganthan, P. N.
    Snasel, V.
    Metadata
    Show full item record
    Abstract
    Random Forest is an ensemble of decision trees based on the bagging and random subspace concepts. As suggested by Breiman, the strength of unstable learners and the diversity among them are the ensemble models’ core strength. In this paper, we propose two approaches known as oblique and rotation double random forests. In the first approach, we propose rotation based double random forest. In rotation based double random forests, transformation or rotation of the feature space is generated at each node. At each node different random feature subspace is chosen for evaluation, hence the transformation at each node is different. Different transformations result in better diversity among the base learners and hence, better generalization performance. With the double random forest as base learner, the data at each node is transformed via two different transformations namely, principal component analysis and linear discriminant analysis. In the second approach, we propose oblique double random forest. Decision trees in random forest and double random forest are univariate, and this results in the generation of axis parallel split which fails to capture the geometric structure of the data. Also, the standard random forest may not grow sufficiently large decision trees resulting in suboptimal performance. To capture the geometric properties and to grow the decision trees of sufficient depth, we propose oblique double random forest. The oblique double random forest models are multivariate decision trees. At each non-leaf node, multisurface proximal support vector machine generates the optimal plane for better generalization performance. Also, different regularization techniques (Tikhonov regularization, axis-parallel split regularization, Null space regularization) are employed for tackling the small sample size problems in the decision trees of oblique double random forest. The proposed ensembles of decision trees produce trees with bigger size compared to the standard ensembles of decision trees as bagging is used at each non-leaf node which results in improved performance. The evaluation of the baseline models and the proposed oblique and rotation double random forest models is performed on benchmark 121 UCI datasets and real-world fisheries datasets. Both statistical analysis and the experimental results demonstrate the efficacy of the proposed oblique and rotation double random forest models compared to the baseline models on the benchmark datasets.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85133677446&origin=inward
    DOI/handle
    http://dx.doi.org/10.1016/j.neunet.2022.06.012
    http://hdl.handle.net/10576/40004
    Collections
    • Network & Distributed Systems [‎142‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video