• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • المساعدة
    • إرسال الأعمال الأكاديمية
    • سياسات الناشر
    • أدلة المستخدم
    • الأسئلة الأكثر تكراراً
  • عن المستودع الرقمي
    • الرؤية والرسالة
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مراكز البحث
  • مركز الكندي لبحوث الحوسبة
  • الشبكات وخدمات البنية التحتية للمعلومات والبيانات
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مراكز البحث
  • مركز الكندي لبحوث الحوسبة
  • الشبكات وخدمات البنية التحتية للمعلومات والبيانات
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Sample-Based Data Augmentation Based on Electroencephalogram Intrinsic Characteristics

    Thumbnail
    التاريخ
    2022-10-01
    المؤلف
    Li, Ruilin
    Wang, Lipo
    Suganthan, P. N.
    Sourina, Olga
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    Deep learning for electroencephalogram-based classification is confronted with data scarcity, due to the time-consuming and expensive data collection procedure. Data augmentation has been shown as an effective way to improve data efficiency. In addition, contrastive learning has recently been shown to hold great promise in learning effective representations without human supervision, which has the potential to improve the electroencephalogram-based recognition performance with limited labeled data. However, heavy data augmentation is a key ingredient of contrastive learning. In view of the limited number of sample-based data augmentation in electroencephalogram processing, three methods, performance-measure-based time warp, frequency noise addition and frequency masking, are proposed based on the characteristics of electroencephalogram signal. These methods are parameter learning free, easy to implement, and can be applied to individual samples. In the experiment, the proposed data augmentation methods are evaluated on three electroencephalogram-based classification tasks, including situation awareness recognition, motor imagery classification and brain-computer interface steady-state visually evoked potentials speller system. Results demonstrated that the convolutional models trained with the proposed data augmentation methods yielded significantly improved performance over baselines. In overall, this work provides more potential methods to cope with the problem of limited data and boost the classification performance in electroencephalogram processing.
    معرّف المصادر الموحد
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85133812493&origin=inward
    DOI/handle
    http://dx.doi.org/10.1109/JBHI.2022.3185587
    http://hdl.handle.net/10576/40052
    المجموعات
    • الشبكات وخدمات البنية التحتية للمعلومات والبيانات [‎142‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    عن المستودع الرقمي

    الرؤية والرسالة

    المساعدة

    إرسال الأعمال الأكاديميةسياسات الناشرأدلة المستخدمالأسئلة الأكثر تكراراً

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    Video