• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Chemical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Chemical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Numerical simulation of the fracture and compression response of self-healing concrete containing engineered aggregates

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2023
    Author
    Pan, Xiaoying
    Gencturk, Bora
    Alnaggar, Mohammed
    Sohail, Muazzam Ghous
    Kahraman, Ramazan
    Al Nuaimi, Nasser
    Rodrigues, Debora F.
    Yildirim, Yucel
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    The existing self-healing concretes that rely on capsules require modifications to one or more traditional concrete mixing, placing, and consolidating methods. Additionally, concrete mixture designs need alterations to accommodate these self-healing capsules. This paper presents the development and characterization of a novel encapsulation method for self-healing concrete. This method, using engineered aggregates (EA), features macro-capsules with a cementitious coating, a brittle container, and a healing agent. Like coarse aggregates, the EA are randomly dispersed in the concrete, and they are added just like any other admixture during the mixing process. Lattice discrete particle models (LDPM) were developed employing randomly packed coarse aggregates and EA with different volume fractions, shapes, sizes, coating thicknesses, and different coating mortars. The models were calibrated using experimental results of split tensile, four-point bending, and uniaxial compression tests. The formation and propagation of cracks in the concrete matrix and EA were observed in the LDPM models. A detailed presentation of the stresses inside the EA and the concrete matrix was obtained. Stress concentration in the EA was affected by the strength of the coating mortar and the shape of EA. Parametric studies were conducted to understand the effect of volume fraction of EA, EA coating thickness, and strength on the overall mechanical behavior of concrete. The results suggest that using coating mortar with higher strength can increase the load-carrying capacity of the concrete, especially when the coating is thicker, but reduce the crack opening in the EA when the crack occurs. The concrete's strength increases with the cavity's size inside the EA at the same EA dosage. These simulations inform the EA design and develop an understanding of the effect of EA on the load-carrying capacity of concrete.
    DOI/handle
    http://dx.doi.org/10.1016/j.cemconcomp.2022.104858
    http://hdl.handle.net/10576/40096
    Collections
    • Center for Advanced Materials Research [‎1482‎ items ]
    • Chemical Engineering [‎1194‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video