عرض بسيط للتسجيلة

المؤلفMohammed, Hanadi Hassen
المؤلفSubramanian, Nandhini
المؤلفAl-Maadeed, Somaya
المؤلفBouridane, Ahmed
تاريخ الإتاحة2023-02-23T09:13:05Z
تاريخ النشر2022
اسم المنشورTEM Journal
المصدرScopus
معرّف المصادر الموحدhttp://dx.doi.org/10.18421/TEM111-33
معرّف المصادر الموحدhttp://hdl.handle.net/10576/40342
الملخصThis paper proposes a new convolutional neural network architecture to tackle the problem of word spotting in handwritten documents. A Deep learning approach using a novel Convolutional Neural Network is developed for the recognition of the words in historical handwritten documents. This includes a pre-processing step to re-size all the images to a fixed size. These images are then fed to the CNN for training. The proposed network shows promising results for both Arabic and English and both modern and historical documents. Four datasets - IFN/ENIT, Visual Media Lab - Historical Documents (VML-HD), George Washington and IAM datasets - have been used for evaluation. It is observed that the mean average precision for the George Washington dataset is 99.6%, outperforming other state-of-the-art methods. Historical documents in Arabic are known for being complex to work with; this model shows good results for the Arabic datasets, as well. This indicates that the architecture is also able to generalize well to other languages
راعي المشروعThis paper was supported by a QUCP award [QUCPCENG-CSE-15-16-1] from the Qatar University. The statements made herein are solely the responsibility of the authors.
اللغةen
الناشرUIKTEN - Association for Information Communication Technology Education and Science
الموضوعArabic word spotting
Deep learning
Word recognition
Word spotting
العنوانWSNet - Convolutional Neural Networkbased Word Spotting for Arabic and English Handwritten Documents
النوعArticle
الصفحات264-271
رقم العدد1
رقم المجلد11
dc.accessType Open Access


الملفات في هذه التسجيلة

Thumbnail

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة