Short term wind power prediction for regional wind farms based on spatial-temporal characteristic distribution
المؤلف | Yu, Guangzheng |
المؤلف | Liu, Chengquan |
المؤلف | Tang, Bo |
المؤلف | Chen, Rusi |
المؤلف | Lu, Liu |
المؤلف | Cui, Chaoyue |
المؤلف | Hu, Yue |
المؤلف | Shen, Lingxu |
المؤلف | Muyeen, S.M. |
تاريخ الإتاحة | 2023-02-26T08:29:58Z |
تاريخ النشر | 2022 |
اسم المنشور | Renewable Energy |
المصدر | Scopus |
الملخص | Accurate regional wind power prediction is of great significance to the wind farm clusters integration and the economic dispatch of the regional power grid. The complex spatiotemporally coupled characteristics between multiple wind farms bring challenges to wind power prediction (WPP) of regional wind farm clusters. In this context, this paper proposes a regional WPP method using spatiotemporally multiple clustering algorithm and hybrid neural network to learn the potential spatial-temporal dependencies of regional wind farms. In which, a long-term daily power curve similarity method is proposed to identify spatially correlative wind power plants in long-term. Furthermore, the spatio-temporal wind farm sub-clusters are dynamically recognized by the similar fluctuation trend of short-term power sequences. On this basis, a spatial-temporal integrated prediction model consisting of the improved convolutional neural network (I-CNN) and the bidirectional long short-term memory (BILSTM) network is established for spatio-temporal sub-cluster based on point clouds distribution. Finally, the effectiveness of the proposed regional wind power forecasting framework is validated by using the Wind Integration National Dataset Toolkit, and the results show that the method improves accuracy effectively. 2022 Elsevier Ltd |
راعي المشروع | This work is supported by the National Natural Science Foundation of China (No. 52207121 and No. 52007167 ) and the technology project of Electric Power Research Institute of State Grid Hubei Electric Power Co ., Ltd. (Grant number: B31532225680 ). |
اللغة | en |
الناشر | Elsevier Ltd |
الموضوع | BILSTM I-CNN Regional wind farms Spatial-temporal correlation Wind power prediction |
النوع | Article |
الصفحات | 599-612 |
رقم المجلد | 199 |
تحقق من خيارات الوصول
الملفات في هذه التسجيلة
الملفات | الحجم | الصيغة | العرض |
---|---|---|---|
لا توجد ملفات لها صلة بهذه التسجيلة. |
هذه التسجيلة تظهر في المجموعات التالية
-
الهندسة الكهربائية [2649 items ]