• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Decomposition-based wind power forecasting models and their boundary issue: An in-depth review and comprehensive discussion on potential solutions

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    1-s2.0-S2352484722012689-main.pdf (1.954Mb)
    Date
    2022
    Author
    Chen, Yinsong
    Yu, Samson
    Islam, Shama
    Lim, Chee Peng
    Muyeen, S.M.
    Metadata
    Show full item record
    Abstract
    Recently, numerous forecasting models have been reported in the wind power forecasting field, aiming for reliable integration of renewable energy into the electric grid. Decomposition-based hybrid models have gained significant popularity in recent years. These methods generally disaggregate the original time series data into sub-time-series with better stationarity, and then the target data is predicted based on the sub-series. However, existing studies usually utilize future data during the decomposition process and therefore cannot be appropriately employed for real-world applications, due to the inaccessibility of future data. This problem is usually known as the boundary issue. By ignoring the boundary issue during decomposition, the developed decomposition-based forecasting models will inevitably lead to unrealistically high performance than what is practically achievable. These impractical predictions would compromise the scheduling and control decisions made based on them. In light of this, this study provides an in-depth review of decomposition-based models for wind power forecasting, as well as the existing solutions for resolving the boundary issue. We first categorize decomposition-based models with the consideration of the boundary issue, wherein the treatment of the boundary issue varies over different hybrid model architectures (i.e., direct approach and multi-component approach) and decomposition techniques (i.e., empirical mode decomposition, variational mode decomposition, wavelet transform, singular spectrum analysis and hybrid decomposition). Then, we systematically summarize commonly available boundary issue solutions into three categories, namely algorithm-based solutions, sampling-strategy-based solutions and iteration-based solutions. We also evaluate the strengths and limitations of the existing boundary issue solutions and discuss their applicability to different classification of decomposition-based models for wind power forecasting. This study will provide useful references for a wide range of future studies for developing accurate and practical wind power forecasting models. 2022
    DOI/handle
    http://dx.doi.org/10.1016/j.egyr.2022.07.005
    http://hdl.handle.net/10576/40382
    Collections
    • Electrical Engineering [‎2840‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video