• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A comparative analysis to forecast carbon dioxide emissions

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    1-s2.0-S2352484722011659-main.pdf (872.4Kb)
    Date
    2022
    Author
    Faruque, Md. Omer
    Rabby, Md. Afser Jani
    Hossain, Md. Alamgir
    Islam, Md. Rashidul
    Rashid, Md Mamun Ur
    Muyeen, S.M.
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Despite the growing knowledge and commitment to climate change, carbon dioxide (CO2) emissions continue to rise dramatically throughout the planet. In recent years, the consequences of climate change have become more catastrophic and have attracted widespread attention globally. CO2 emissions from the energy industry have lately been highlighted as one of the world's most pressing concerns for all countries. This paper examines the relationships between CO2 emissions, electrical energy consumption, and gross domestic product (GDP) in Bangladesh from 1972 to 2019 in the first section. In this purpose, we applied the fully modified ordinary least squares (FMOLS) approach. The findings indicate that CO2 emissions, electrical energy consumption, and GDP have a statistically significant long-term cointegrating relationship. Developing an accurate CO2 emissions forecasting model is crucial for tackling it safely. This leads to the second step, which involves formulating the multivariate time series CO2 emissions forecasting challenges considering its influential factors. Based on multivariate time series prediction, four deep learning algorithms are analyzed in this work, those are convolution neural network (CNN), CNN long short-term memory (CNN-LSTM), long short-term memory (LSTM), and dense neural network (DNN). The root mean square error (RMSE), mean absolute error (MAE) and mean absolute percentage error (MAPE) are used to analyze and compare the performances of the predictive models. The prediction errors in MAPE of the CNN, CNN-LSTM, LSTM, and DNN are 15.043, 5.065, 5.377, and 3.678, respectively. After evaluating those deep learning models, a multivariate polynomial regression has also been employed to forecast CO2 emissions. It seems to have nearly similar accuracy as the LSTM model, having a MAPE of 5.541. 2022 The Authors
    DOI/handle
    http://dx.doi.org/10.1016/j.egyr.2022.06.025
    http://hdl.handle.net/10576/40383
    Collections
    • Electrical Engineering [‎2840‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video