• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Uncertainty awareness in transmission line fault analysis: A deep learning based approach

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2022
    Author
    Fahim, Shahriar Rahman
    Muyeen, S M
    Mannan, Mohammad Abdul
    Sarker, Subrata K.
    Das, Sajal K.
    Al-Emadi, Nasser
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    With the expansion of the modern power system, it is of increasing significance to analyze the faults in the transmission lines. As the transmission line is the most exposed element of a power system, it is prone to different types of environmental as well as measurement uncertainties. This uncertainties influence the sampled signals and negatively affects the fault detection and classification performance. Therefore, an unsupervised deep learning framework named deep belief network is presented in this paper for fault detection and classification of power transmission lines. The proposed framework learns the beneficial feature information from the uncertainty affected signals with a unique two stage learning strategy. This strategy enables the proposed framework to extract lower level fault-oriented information which may remain unobserved for other alternative approaches. The efficacy of the proposed framework has been examined on the IEEE-39 bus benchmark topology. The in-depth accuracy assessment with different accuracy metrics along with exclusive case studies such as the influence of noise, measurement error as well as line and source parameter variations will be conducted in this paper to justify the real-world applicability of the proposed framework. Furthermore, the relative performance assessment with the cutting-edge rival techniques is also presented in this paper to verify if the proposed framework attains a state-of-the-art classification performance or not. 2022 Elsevier B.V.
    DOI/handle
    http://dx.doi.org/10.1016/j.asoc.2022.109437
    http://hdl.handle.net/10576/40390
    Collections
    • Electrical Engineering [‎2840‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video