• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • المساعدة
    • إرسال الأعمال الأكاديمية
    • سياسات الناشر
    • أدلة المستخدم
    • الأسئلة الأكثر تكراراً
  • عن المستودع الرقمي
    • الرؤية والرسالة
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • الهندسة الميكانيكية والصناعية
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • الهندسة الميكانيكية والصناعية
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    An adaptive step-down procedure for fault variable identification

    Thumbnail
    التاريخ
    2015-08-25
    المؤلف
    Kim, Jinho
    Jeong, Myong K.
    Elsayed, Elsayed A.
    Al-Khalifa, K.N.
    Hamouda, A.M.S.
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    In a process with a large number of process variables (high-dimensional process), identifying which variables cause an out-of-control signal is a challenging issue for quality engineers. In this paper, we propose an adaptive step-down procedure using conditional T2 statistic for fault variable identification. While existing procedures focus on selecting variables that have strong evidence of a change, the proposed step-down procedure selects a variable having the weakest evidence of a change at each step based on the variables that are selected in previous steps. The information of selected unchanged variables is effectively utilised in obtaining a powerful conditional T2 test statistic for identifying the changed elements of the mean vector. The proposed procedure is designed to utilise the correlation information between fault and non-fault variables for the efficient fault variables identification. Further, the simulation results show that the proposed procedure has the better diagnostic performance compared with existing methods in terms of fault variable identification and computational complexity, especially when the number of the variables is high and the number of fault variables is small.
    DOI/handle
    http://dx.doi.org/10.1080/00207543.2015.1076948
    http://hdl.handle.net/10576/4097
    المجموعات
    • الهندسة الميكانيكية والصناعية [‎1503‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    عن المستودع الرقمي

    الرؤية والرسالة

    المساعدة

    إرسال الأعمال الأكاديميةسياسات الناشرأدلة المستخدمالأسئلة الأكثر تكراراً

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    Video