• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Health Sciences
  • Biomedical Sciences
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Health Sciences
  • Biomedical Sciences
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    An in silico analysis of the impact of POLE mutations on cladribine docking

    Thumbnail
    Date
    2022
    Author
    Loganathan, L.
    Al-Haidose, A.
    Ganesh Kumar, A.
    Sujatha, L. B.
    Carlus, F. H.
    Alharbi, A.
    Alhyassat, S.
    Muthusamy, K.
    Carlus, S. J.
    Abdallah, A. M.
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    OBJECTIVE: Polymerase ε exonuclease (POLE) is an enzyme involved in DNA replication and may be an attractive therapeutic target in various cancers. Here we sought to model the impact of specific POLE mutations on protein function. Due to the lack of a crystal structure, the tertiary structures of the wild type and four common mutants were modeled using I-Tasser server. MATERIALS AND METHODS: Molecular docking and dynamic simulation studies were performed, and the structure and function of the mutants analyzed through residue conservation analysis and protein folding energy changes. RESULTS: All mutants of POLE gene had favorable binding affinities compared with their wild type of counterpart. The P286R variant, but not the other variants, disrupted cladribine binding to the protein. Similarly, dynamics studies revealed instability of the P286R mutant, while V411L, L424V, and L424F appeared to favor cladribine binding. CONCLUSIONS: Since P286R is a hotspot mutation in endometrioid carcinomas, patients with this variant may not respond to cladribine. Population-based pharmacogenomics studies will be required to validate our results.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85141004287&origin=inward
    DOI/handle
    http://dx.doi.org/10.26355/eurrev_202210_30033
    http://hdl.handle.net/10576/41404
    Collections
    • Biomedical Sciences [‎796‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video