• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Chemical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Chemical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Intermediate Pyrolysis of Desert Date Shell for Conversion to High-Quality Biomaterial Resources

    Thumbnail
    Date
    2022-06-15
    Author
    Kabir, Garba
    Mohammed, Isah Yakub
    Abakr, Yousif Abdalla
    Hameed, Bassim H.
    Metadata
    Show full item record
    Abstract
    Intermediate pyrolysis on desert date (Balanites aegyptiacus) shell (BAS) was accomplished for the first time to authenticate the biomass potential for producing quality biomaterials such as bio-oil and biochar. Fourier transform infrared spectroscopy (FTIR), elemental analysis, and gas chromatography-mass spectrometry (GC-MS) were employed to examine the compositions of the resultant bio-oil. The FTIR spectrum revealed the functional groups of oxygenated compounds like aldehydes, alcohols, phenolics, acids, and esters in the bio-oil. GC-MS confirmed that the bio-oil has diverse compositions of oxygenated compounds rich in acids, phenolics, and benzene derivatives. From the ultimate analysis, the bio-oil had a higher carbon content and a lower oxygen content than the corresponding BAS sample. The calorific values, by comparison, were higher than that of the BAS sample but lower than for fossil fuels. The favorable outcomes from the characters of the bio-oil and biochar suggested that BAS can be an attractive feedstock to produce high-value biomaterials.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85132729758&origin=inward
    DOI/handle
    http://dx.doi.org/10.1002/ceat.202200095
    http://hdl.handle.net/10576/41518
    Collections
    • Chemical Engineering [‎1262‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video