• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A Unified Framework for Differentiated Services in Intelligent Healthcare Systems

    Thumbnail
    Date
    2022
    Author
    Al-Abbasi, A. O.
    Samara, L.
    Salem, S.
    Hamila, R.
    Al-Dhahir, N.
    Metadata
    Show full item record
    Abstract
    The Coronavirus disease 2019 (COVID-19) outbreak continues to significantly expose the vulnerabilities of healthcare systems around the world. These unprecedented circumstances create an opportunity for improving healthcare services which is desperately needed. This paper proposes a novel framework that distributes the patients across heterogeneous medical facilities (MFs) so that a weighted sum of the expected service time (EST) and service time tail probability (STTP) for all patients is minimized. We propose a model-based and model-free algorithms to schedule patients requests across the MFs. Our algorithms prioritize the patients with severe/critical conditions over others who can tolerate more delay in service. Based on the model-based approach, we formulate an optimization problem as a convex combination of both EST and STTP metrics, and apply an efficient iterative algorithm to solve it. Then, a more practical model-free scheme is proposed by adopting a deep reinforcement learning approach. Our model-free approach does not rely on pre-defined models or assumptions about the environment. Rather, it learns to choose scheduling decisions solely through observations of the resulting performance of past decisions. Our extensive results demonstrate a significant performance improvement of our proposed scheduling schemes when compared with other algorithms and competitive baselines. 2013 IEEE.
    DOI/handle
    http://dx.doi.org/10.1109/TNSE.2021.3127942
    http://hdl.handle.net/10576/41609
    Collections
    • Electrical Engineering [‎2821‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video