Convolutional Neural Networks for patient-specific ECG classification
المؤلف | Kiranyaz, Serkan |
المؤلف | Ince, Turker |
المؤلف | Hamila, Ridha |
المؤلف | Gabbouj, Moncef |
تاريخ الإتاحة | 2023-04-04T09:09:09Z |
تاريخ النشر | 2015 |
اسم المنشور | Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS |
المصدر | Scopus |
الملخص | We propose a fast and accurate patient-specific electrocardiogram (ECG) classification and monitoring system using an adaptive implementation of 1D Convolutional Neural Networks (CNNs) that can fuse feature extraction and classification into a unified learner. In this way, a dedicated CNN will be trained for each patient by using relatively small common and patient-specific training data and thus it can also be used to classify long ECG records such as Holter registers in a fast and accurate manner. Alternatively, such a solution can conveniently be used for real-time ECG monitoring and early alert system on a light-weight wearable device. The experimental results demonstrate that the proposed system achieves a superior classification performance for the detection of ventricular ectopic beats (VEB) and supraventricular ectopic beats (SVEB). 2015 IEEE. |
اللغة | en |
الناشر | IEEE |
الموضوع | algorithm artificial neural network electrocardiography heart ventricle extrasystole human pathophysiology physiologic monitoring supraventricular premature beat Algorithms Atrial Premature Complexes Electrocardiography Humans Monitoring, Physiologic Neural Networks (Computer) Ventricular Premature Complexes |
النوع | Conference Paper |
الصفحات | 2608-2611 |
رقم المجلد | 2015-November |
الملفات في هذه التسجيلة
الملفات | الحجم | الصيغة | العرض |
---|---|---|---|
لا توجد ملفات لها صلة بهذه التسجيلة. |
هذه التسجيلة تظهر في المجموعات التالية
-
الهندسة الكهربائية [2649 items ]