عرض بسيط للتسجيلة

المؤلفSayed, Aya Nabil
المؤلفHamila, Ridha
المؤلفHimeur, Yassine
المؤلفBensaali, Faycal
تاريخ الإتاحة2023-04-04T09:09:11Z
تاريخ النشر2022
اسم المنشور2022 5th International Conference on Signal Processing and Information Security, ICSPIS 2022
المصدرScopus
معرّف المصادر الموحدhttp://dx.doi.org/10.1109/ICSPIS57063.2022.10002508
معرّف المصادر الموحدhttp://hdl.handle.net/10576/41661
الملخصBuilding occupancy data helps increase energy management systems' performance, enabling lower energy use while preserving occupant comfort. The focus of this study is employing environmental data (e.g., including but not limited to temperature, humidity, carbon dioxide (CO2), etc.) to infer occupancy information. This will be achieved by exploring the application of information theory metrics with machine learning (ML) approaches to classify occupancy levels for a given dataset. Three datasets and six distinct ML algorithms were used in a comparative study to determine the best strategy for identifying occupancy patterns. It was determined that both k-nearest neighbors (kNN) and random forest (RF) identify occupancy labels with the highest overall level of accuracy, reaching 97.99% and 98.56%, respectively. 2022 IEEE.
راعي المشروعThis paper was made possible by the Graduate Assistantship (GA) program provided from Qatar University (QU). The statements made herein are solely the responsibility of the authors.
اللغةen
الناشرIEEE
الموضوعCross-Entropy
Entropy
Gini Impurity Index
Information Gain
Occupancy Detection
العنوانEmploying Information Theoretic Metrics with Data-Driven Occupancy Detection Approaches: A Comparative Analysis
النوعConference Paper
الصفحات50-54
dc.accessType Abstract Only


الملفات في هذه التسجيلة

الملفاتالحجمالصيغةالعرض

لا توجد ملفات لها صلة بهذه التسجيلة.

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة