Show simple item record

AuthorAejas, Bajeela
AuthorBelhi, Abdelhak
AuthorBouras, Abdelaziz
Available date2023-04-09T08:34:46Z
Publication Date2023
Publication NameLecture Notes in Networks and Systems
ResourceScopus
URIhttp://dx.doi.org/10.1007/978-981-19-7663-6_70
URIhttp://hdl.handle.net/10576/41707
AbstractIdentifying and extracting information from contracts is an important task of contract analysis, which is mostly performed manually by lawyers and legal specialists. This manual analysis is a time-consuming, error-prone task. We can overcome this by automating the task of legal entity extraction using the Natural Language Processing (NLP) techniques. For extracting information from the natural language text, we can use popular NLP methods Named Entity Recognition (NER) and relation extraction (RE). Most NER and RE methods rely on machine learning and deep learning to identify relevant entities in natural language text. The main concern in adapting the AI methods for contract element extraction is the scarcity of annotated datasets in the legal field. Aiming at tackling this challenge, we decided to prepare the contract datasets for NER and RE tasks by manually annotating publicly available English contracts. This work is a part of the research aimed at automating the conversion of natural language contracts into Smart Contracts in the blockchain-based Supply Chain context. This paper explains the implementation and comparison of NER models using the deep learning methods BiLSTM and transformer-based BERT for evaluating the dataset. 2023, The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
SponsorAcknowledgements This publication was made possible by NPRP grant NPRP11S-1227-170135 from the Qatar National Research Fund (a member of Qatar Foundation). The statements made herein are solely the responsibility of the authors (www.supplyledger.qa).
Languageen
PublisherSpringer Science and Business Media Deutschland GmbH
SubjectDataset
Deep learning
Legal domain
NER
NLP
RE
TitleToward an NLP Approach for Transforming Paper Contracts into Smart Contracts
TypeConference Paper
Pagination751-759
Volume Number579
dc.accessType Abstract Only


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record