• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Hesitant extension of fuzzy-rough set to address uncertainty in classification

    Thumbnail
    Date
    2018
    Author
    Zhang, Haiqing
    Li, Daiwei
    Wang, Tao
    Li, Tianrui
    Yu, Xi
    Bouras, Abdelaziz
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Although fuzzy rough sets have been considered as a powerful theory to handle real-valued data with uncertainty, fuzzy rough sets based algorithms reached their limit of conveying hesitation information in the processes of making classification decision. Hesitant fuzzy set plays an important role in handling hesitant and uncertainty information. Thus, the fusion of hesitant fuzzy set and fuzzy-rough set is then explored and also applied it into the task of classification. The contributions of this paper include: 1) A dimensionality reduction of hesitant fuzzy sets by investigating the equivalence relation between hesitant fuzzy elements is studied. 2) A new definition of upper and lower approximations of the hesitant fuzzy rough set is given by studying the hesitant fuzzy similarities between hesitant fuzzy elements. 3) A hesitant fuzzy rough sets nearest neighbor (HFRNN) classification algorithm is proposed.The experiments show that the classification algorithm of HFRNN outperforms the existing algorithms of FRNN, VQNN, SNN and ASNN in classification accuracy and execution time. 2018 - IOS Press and the authors. All rights reserved.
    DOI/handle
    http://dx.doi.org/10.3233/JIFS-17415
    http://hdl.handle.net/10576/41767
    Collections
    • Computer Science & Engineering [‎2428‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video