عرض بسيط للتسجيلة

المؤلفIqbal, Bilal
المؤلفIqbal, Waheed
المؤلفKhan, Nazar
المؤلفMahmood, Arif
المؤلفErradi, Abdelkarim
تاريخ الإتاحة2023-04-10T09:10:05Z
تاريخ النشر2020
اسم المنشورCluster Computing
المصدرScopus
معرّف المصادر الموحدhttp://dx.doi.org/10.1007/s10586-019-02929-x
معرّف المصادر الموحدhttp://hdl.handle.net/10576/41815
الملخصNowadays, video cameras are increasingly used for surveillance, monitoring, and activity recording. These cameras generate high resolution image and video data at large scale. Processing such large scale video streams to extract useful information with time constraints is challenging. Traditional methods do not offer scalability to process large scale data. In this paper, we propose and evaluate cloud services for high resolution video streams in order to perform line detection using Canny edge detection followed by Hough transform. These algorithms are often used as preprocessing steps for various high level tasks including object, anomaly, and activity recognition. We implement and evaluate both Canny edge detector and Hough transform algorithms in Hadoop and Spark. Our experimental evaluation using Spark shows an excellent scalability and performance compared to Hadoop and standalone implementations for both Canny edge detection and Hough transform. We obtained a speedup of 10.8x and 9.3x for Canny edge detection and Hough transform respectively using Spark. These results demonstrate the effectiveness of parallel implementation of computer vision algorithms to achieve good scalability for real-world applications. 2019, Springer Science+Business Media, LLC, part of Springer Nature.
راعي المشروعThis work was made possible by NPRP Grant # 7-481-1-088 from the Qatar National Research Fund (a member of Qatar Foundation). The statements made herein are solely the responsibility of the authors.
اللغةen
الناشرSpringer
الموضوعCanny edge detection
Hadoop
Hough transform
MapReduce
Spark
Video processing
العنوانCanny edge detection and Hough transform for high resolution video streams using Hadoop and Spark
النوعArticle
الصفحات397-408
رقم العدد1
رقم المجلد23
dc.accessType Abstract Only


الملفات في هذه التسجيلة

الملفاتالحجمالصيغةالعرض

لا توجد ملفات لها صلة بهذه التسجيلة.

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة