• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • About QSpace
    • Vision & Mission
  • Help
    • Item Submission
    • Publisher policies
    • User guides
      • QSpace Browsing
      • QSpace Searching (Simple & Advanced Search)
      • QSpace Item Submission
      • QSpace Glossary
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Canny edge detection and Hough transform for high resolution video streams using Hadoop and Spark

    Thumbnail
    Date
    2020
    Author
    Iqbal, Bilal
    Iqbal, Waheed
    Khan, Nazar
    Mahmood, Arif
    Erradi, Abdelkarim
    Metadata
    Show full item record
    Abstract
    Nowadays, video cameras are increasingly used for surveillance, monitoring, and activity recording. These cameras generate high resolution image and video data at large scale. Processing such large scale video streams to extract useful information with time constraints is challenging. Traditional methods do not offer scalability to process large scale data. In this paper, we propose and evaluate cloud services for high resolution video streams in order to perform line detection using Canny edge detection followed by Hough transform. These algorithms are often used as preprocessing steps for various high level tasks including object, anomaly, and activity recognition. We implement and evaluate both Canny edge detector and Hough transform algorithms in Hadoop and Spark. Our experimental evaluation using Spark shows an excellent scalability and performance compared to Hadoop and standalone implementations for both Canny edge detection and Hough transform. We obtained a speedup of 10.8x and 9.3x for Canny edge detection and Hough transform respectively using Spark. These results demonstrate the effectiveness of parallel implementation of computer vision algorithms to achieve good scalability for real-world applications. 2019, Springer Science+Business Media, LLC, part of Springer Nature.
    DOI/handle
    http://dx.doi.org/10.1007/s10586-019-02929-x
    http://hdl.handle.net/10576/41815
    Collections
    • Computer Science & Engineering [‎2485‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policies

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Video