عرض بسيط للتسجيلة

المؤلفNezhad, Erfan Zal
المؤلفSarraf, Masoud
المؤلفMusharavati, Farayi
المؤلفJaber, Fadi
المؤلفWang, JI
المؤلفHosseini, Hamid Reza Madaah
المؤلفBae, Sungchul
المؤلفChowdhury, Muhammad
المؤلفSo, Hongyun
المؤلفSukiman, Nazatul Liana
تاريخ الإتاحة2023-04-17T06:57:43Z
تاريخ النشر2022
اسم المنشورSurfaces and Interfaces
المصدرScopus
معرّف المصادر الموحدhttp://dx.doi.org/10.1016/j.surfin.2021.101623
معرّف المصادر الموحدhttp://hdl.handle.net/10576/41959
الملخصZirconium has attracted considerable attention in the biomedical field owing to its biocompatibility and desirable tribological and mechanical properties. In this study, we anodized pure zirconium in an ammonium fluoride and ethylene glycol electrolyte, which produced a coating of ZrO2 nanotubes (NTs). The ZrO2 coated samples were annealed at different temperatures, and the morphology and structure of the coated substrates were studied using XPS, SEM, TEM, EDS, and SAED. The micro/nanomechanical properties and corrosion resistance of the samples were evaluated. Wear tests performed on bare and coated substrates revealed that the coated samples annealed at 400 °C had a significantly lower average coefficient of friction than the other substrates. The corrosion test was performed on different substrates, and the results showed that the corrosion resistance of the coated sample annealed at 400 °C was considerably higher than that of the other substrates. According to the nanoindentation tests, the elastic modulus of the Zr sample decreased from 74.3 to 31.7 GPa after anodization and the creation of ZrO2 NTs. Biocompatibility tests revealed that cell attachment to the surface of the ZrO2 NTs decreased due to the presence of F−; however, the cell viability increased after the ZrO2 NT-coated samples were annealed at 200 and 400 °C.
راعي المشروعThis work was supported by the National Research Foundation of Korea (grant number NRF-2020R1A4A1019074 ) and the Qatar National Research Fund, the Qatar Foundation, Doha, Qatar (grant number NPRP11S-0102-180178 ). The authors also would like to acknowledge University of Malaya and Sharif University of Technology for supporting this research.
اللغةen
الناشرElsevier
الموضوعBiomaterials
Hydrophilicity
Mechanical properties
Nanoindentation
Wear and corrosion behavior
ZrO2 nanotubes
العنوانEffect of zirconia nanotube coating on the hydrophilicity and mechanochemical behavior of zirconium for biomedical applications
النوعArticle
رقم المجلد28


الملفات في هذه التسجيلة

الملفاتالحجمالصيغةالعرض

لا توجد ملفات لها صلة بهذه التسجيلة.

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة